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1. Executive Summary 
The DIVA (Data IntensiVe Architecture) Project has developed a prototype workstation class 
system using VLSI PIM (Processor-In-Memory) chips as smart-memory coprocessors to a 
conventional microprocessor. These chips represent the first smart memory devices to support 
virtual addressing and be capable of executing multiple threads of control. The DIVA PIM VLSI 
is fabricated in TSMC 0.18-micron technology. The chip measures 9.8 mm on a side and 
contains 55 million transistors.   
 
The successful demonstration of the DIVA prototype system incorporating this chip involved 
research in several areas including: System Architecture, Software System Architecture, PIM 
Architecture, VLSI Architecture/Implementation, Emulator Architecture/Design and the actual 
development of the prototype system hardware and software. These areas involved teams made 
up of staff from USC/Information Sciences Institute, the University of Notre Dame, Caltech, the 
University of Delaware and AlphaTech, Inc.   
 
The goals of the DIVA Project were to demonstrate the capabilities of PIM technology as smart 
memory in a system: 

• Exploit the inherent memory bandwidth 
o embedded DRAM technology 

• Cover a broad range of applications: 
o irregular memory accesses (sparse-matrices & pointers) 
o image processing and multimedia (streaming computations) 

• Evolutionary application migration path 
o PIMs also support standard memory accesses 
o familiar parallel programming paradigm 

• Prototype a workstation-class system 
o VLSI PIM chips in standard memory modules 

 
All these goals were met. The projected peak performance on a DIVA system with 32 PIMs is 40 
GOPS, with an aggregate memory bandwidth of 160 Gbytes/second.  This is more than two 
orders of magnitude bandwidth increase over conventional systems meeting the DIS (Data 
Intensive Systems) goal. A 35-x speedup on the “cornerturn” benchmark, a matrix transpose 
kernel function found in many data intensive DoD applications, was also demonstrated. 
 
The DIVA VLSI PIM developed under the DARPA Data Intensive Systems (DIS) Program is 
proving to be effective in ameliorating the processor-memory bottleneck present in most of 
today's computing systems. In addition, DIVA PIM technology has been incorporated into the 
MONARCH (MOrphable Networked ARCHitecture) Project under the DARPA PCA 
(Polymorphous Computer Architecture) Program and Godiva in partnership with Hewlett 
Packard on the HPCS (High Productivity Computing System) Program. 
 
2. Introduction 
The increasing gap between processor and memory speeds is a well-known problem in computer 
architecture, with peak processor performance increasing at a rate of 50-60% per year while 
memory access times improve at merely 5-7%. Further, techniques designed to hide memory 
latency, such as multithreading and prefetching, actually increase the memory bandwidth 
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requirements [Burger96]. Recent VLSI technology trends offer a promising solution to bridging 
the processor-memory gap: embedded-DRAM technology integrates logic with high-density 
memory in a processing-in-memory (PIM) chip. Because PIM internal processors can be directly 
connected to the memory banks, the memory bandwidth is dramatically increased (with hundreds 
of gigabit/second aggregate bandwidth available on a chip --- up to 2 orders of magnitude over 
conventional DRAM). Latency to on-chip logic is also reduced, down to as little as one half that 
of a conventional memory system, because internal memory accesses avoid the delays associated 
with communicating off chip.   
 
The system described in this report, DIVA (Data IntensiVe Architecture), leverages embedded-
DRAM technology to replace or augment the memory system of a conventional workstation with 
“smart memories” capable of very large amounts of processing. System bandwidth limitations 
are thus overcome in three ways: (1) tight coupling of a single PIM processor with an on-chip 
memory bank; (2) distributing multiple processor memory “nodes” per PIM chip; and, (3) 
utilizing a separate chip-to-chip interconnect, for direct communication between nodes on 
different chips that bypasses the host system bus. The DIVA system architecture is focused on 
achieving the following four goals: (1) developing PIMs that can serve as the only memory in the 
system, assuming the dual roles of “smart memories” and conventional memory; (2) supporting a 
wide range of familiar programming paradigms, closely related to parallel computing; (3) 
targeting applications that are severely impacted by the processor-memory bottlenecks in 
conventional systems: sparse-matrix and pointer-based applications with irregular memory 
access patterns, and image and video applications with large working sets; and, (4) developing a 
VLSI device to exploit memory and communications bandwidth in PIM-based systems while 
making efficient use of on-chip resources for target applications.  These four goals distinguish 
DIVA from other PIM-based architectures. 
 
The integration into a conventional system affords the simultaneous benefits of PIM technology 
and a high-performance microprocessor host, yielding high performance for mixed workloads. 
Since PIM processors are usually not as sophisticated as state-of-the-art microprocessors due to 
on-chip space constraints, systems using PIMs alone in a multiprocessor may sacrifice 
performance on uniprocessor computations [Saulsbury96][Kogge94], while SoC (System-on-a-
Chip) solutions (e.g., the IRAM [Patterson97] and the Mitsubishi M32R/D [Mitsubishi99]) limit 
the application domain. DIVA’s support for a broad range of familiar parallel programming 
paradigms, including task parallelism for irregular computations, distinguishes it from systems 
with restricted applicability (such as to SIMD parallelism [Elliot99][Gokhale95][Patterson97]), 
as well as systems requiring a novel programming methodology or compiler technology to 
configure logic [Babb99], or to manage a complex memory, computation and communication 
hierarchy [Kang99]. DIVA’s PIM-to-PIM interconnect improves upon approaches that serialize 
communication through the host, which decreases bandwidth by introducing added traffic on the 
processor memory bus [Oskin98][Gokhale95]. 
 
A major challenge in meeting the above four goals is the integrated system design, which 
implements the system architecture and spans the applications, systems software, host-to-
memory interface, memory-to-memory interconnect, PIM software and embedded DRAM VLSI 
devices. 
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The remainder of this report is organized as follows. The next section summarizes the DIVA 
system architecture, to set the context for the PIM microarchitecture and other sections that 
follow. Section 4 describes the VLSI architecture and implementation in detail. Section 5 
presents the compiler optimization, implementation and performance results. Section 6 describes 
the DIVA system simulator that supported the applications and architectural development 
throughout the DIVA Project. Section 7 sets out the details of how the DIS benchmarks and 
stressmarks as well as other application code were used with the simulator to evaluate DIVA’s 
performance. Section 8 summarizes our approach to an FPGA (Field Programmable Gate Array) 
based emulator and the lessons that we learned in this endeavor. Section 9 presents the system 
integration that was required to produce a successful system prototype demonstration at DARPA 
Tech 2002. In the remaining sections, we summarize our results, technology transfer, 
publications and conclusions. 
 
3. System Architecture 
A driving principle of the DIVA system architecture is to efficiently utilize PIM technology in a 
way that requires only “evolutionary” software support. This principle demands an approach that 
enables integration of PIM features into conventional systems as seamlessly as possible. 
Therefore, DIVA chips will be packaged as conventional memory modules. Inserted onto a 
conventional microprocessor motherboard, the memory on the DIVA chips is accessed by the 
host microprocessor as if it were conventional memory. 
 
In Figure 1, we show a small set of PIMs connected to a single external host processor through a 
host-memory interface. The PIM chips communicate through separate PIM-to-PIM channels. 
 

 
Figure 1. DIVA system architecture 

 
This separate memory-to-memory interconnect enables communication between memories 
without involving the host processor. 
 
Spawning computation, gathering results, synchronizing activity, or simply accessing non-local 
data is accomplished via parcels. A parcel is closely related to an active message as it is a 
relatively lightweight communication mechanism containing a reference to a function to be 
invoked when the parcel is received [vonEicken92]. Parcels are distinguished from active 
messages in that the destination of a parcel is an object in memory, not a specific processor. 
 
Parcels are transmitted through a separate PIM-to-PIM interconnect to enable communication 
without interfering with host-memory traffic. This interconnect must be amenable to the dense 
packing requirement of memory devices and allow the addition or removal of devices from the 
system. For system sizes of the scale expected for DIVA (on the order of 32 PIM chips), this 
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combination of requirements favors a one dimensional network [Kang00]. Future generations of 
DIVA-like systems that contain large numbers of PIM chips will require a more complex 
interconnection network and are the topic of future research. 
 
Parcels, application code, and data contain virtual addresses. To translate these addresses without 
the overhead of maintaining conventional page tables at each node, we classify DIVA memory 
according to usage [Hall99]: (1) global memory visible to the host and PIM nodes; (2) dumb 
memory allocated as conventional pages in a host application's virtual space and untouched by 
PIM node processing; and, (3) local memory used exclusively by PIM node routines. To 
condense translation information, rather than page tables, we use segments, each of which is 
defined by segment registers which are used by the node address translation unit as discussed 
below. 
 
The primary functions of the node address translation unit are to translate virtual addresses to 
physical addresses for those accesses, which are locally resident, and to provide access 
protection. The types of accesses generated by a DIVA PIM processor that require translation 
include instruction fetches and data accesses to memory or memory-mapped devices such as 
parcel buffers, generated by load or store instructions. 
 
Given the simplicity of the address translation scheme, very little hardware support is needed to 
effect efficient translation. A segment base address register and limit register is needed for each 
of the eight local segments. Also, one virtual base, limit, and physical base register are needed 
for each resident global segment. The initial DIVA architecture provides four sets of global 
segment registers, although alternative architectures could provide more. The address translation 
unit contains no direct support for home node translation, although the preferred system 
programming is such that the global segments resident on a node form the portion of global 
memory for which that node is the home node. If this is not the case, address faults invoke 
system software, which performs the home node translation. 
 
In addition to local segments, a node maintains translation information for its portion of global 
memory. Remote addresses are translated via the concept of a home node, which is guaranteed to 
have the translation [Saulsbury95]. Thus, each node's portion of global memory includes objects 
for which it is the home node. The major advantages of this approach are that translation may be 
accomplished rapidly, and translation information on each PIM scales well.   
 
Memory management functionality is distributed among the host's standard operating system, 
augmented with support for PIMs, and run-time kernels on each PIM processor.  Unlike standard 
multiprocessor systems, the host, which has a system-level view, remains a central figure in 
system-level scheduling, disk I/O operations, and memory management. The PIM run-time 
kernel must collaborate with the host on system-level operations, such as loading PIM programs 
and data, memory management of PIM-visible segments, and PIM context switches between 
different user programs. The challenge in this collaboration is that there are really two views of 
memory that must be maintained.  For dumb pages and for disk I/O of PIM-visible segments, the 
host sees memory as standard 4Kbyte pages; the PIM run-time kernel instead views PIM-visible 
memory as variable-sized segments [Hall00]. 
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4. VLSI Architecture and Implementation 
The goal of the VLSI development on the DIVA project was to produce a prototype chip that 
demonstrated the enormous bandwidth available between memory blocks and processing 
subcomponents on a processing-in-memory (PIM) device. As the following sections discuss, the 
DIVA project was very successful with its VLSI demonstrations and was the first effort under 
the Data-Intensive Systems (DIS) program to deliver working silicon. The bulk of this effort can 
be categorized into chip-level architecture research and VLSI implementation. 
 
4.1 PIM Chip Architecture 
Each DIVA PIM chip is a VLSI memory device augmented with general-purpose computing and 
networking/communication hardware. Although a PIM may consist of multiple nodes, each of 
which are primarily comprised of a few megabytes of memory and a node processor, Figure 2 
shows a PIM with a single node, which reflects the focus of the research that was conducted on 
the DIVA project. Nodes on a PIM chip share a single PIM Routing Component (PiRC) and a 
host interface. The PiRC is responsible for routing parcels on and off chip. The host interface 
implements the JEDEC standard SDRAM (Synchronous Dynamic Random Access Memory) 
protocol so that memory accesses as well as parcel activity initiated by the host appear as 
conventional memory accesses from the host perspective. More details of the PiRC can be found 
in [Kang00] and more information on the host interface is given in [Draper02a]. 
 
Figure 2 also shows two interconnects that span a PIM chip for information flow between nodes, 
the host interface, and the PiRC. Each interconnect is distinguished by the type of information it 
carries. The PIM memory bus is used for conventional memory accesses from the host processor. 
The parcel interconnect allows parcels to transit between the host interface, the nodes, and the 
PiRC. Within the host interface, a parcel buffer (PBUF) is a buffer that is memory-mapped into 
the host processor's address space, permitting application-level communication through parcels. 
Each PIM node also has a PBUF, memory-mapped into the node's local address space. More 
information on the PBUF design is found in Appendix A2:  DIVA Node Architecture manual. 
 

 
Figure 2. DIVA PIM chip organization 

 
Figure 3 shows the major control and data connections within a node, with the 256-bit memory 
data bus as the centerpiece. The DIVA PIM node processing logic supports single-issue, in-order 
execution, with 32-bit instructions and 32-bit addresses. There are two datapaths whose actions 
are coordinated by a single execution control unit: a scalar datapath that performs sequential 
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operations on 32-bit operands, and a WideWord datapath that performs fine-grain parallel 
operations on 256-bit operands. Both datapaths execute from a single instruction stream under 
the control of a single 5-stage DLX (Deluxe)-like pipeline. The instruction set has been designed 
so both datapaths can, for the most part, use the same opcodes and condition codes, generating a 
large functional overlap. 

 
 

Figure 3. DIVA PIM node architecture 
 
Each datapath has its own independent general-purpose register file, 32 32-bit registers for the 
scalar datapath and 32 256-bit registers for the WideWord datapath, but special instructions 
permit direct transfers between datapaths without going through memory. Although not 
supported in the initial DIVA prototype, floating-point extensions to the WideWord datapath will 
be provided in future implementations. The memory arbiter/controller is responsible for 
generating proper control signals to the memory macro. Its functions include initiating refresh 
cycles as needed and arbitrating between the host memory port and the execution control unit for 
access to the memory macro. Furthermore, it tracks and maintains an open row in the DRAM 
macro to enable page-mode accesses as often as possible.  Another key component of each PIM 
node is an instruction cache, which was included in the DIVA design to keep instruction accesses 
to the memory macro from interfering with data accesses as much as possible. Each node also 
contains a parcel buffer (PBUF), as described earlier.  The following sections briefly discuss the 
scalar and WideWord subcomponents, highlighting some of the more notable features. More 
detail on these microarchitectures as well as those of other subcomponents of the DIVA PIM 
chip can be found in the Appendices. 
 
4.1.1 Microarchitecture: The Scalar Processor 
As noted earlier, the combination of the execution control unit and scalar datapath is a standard 
RISC processor and serves as the DIVA scalar processor, or microcontroller. It coordinates all 
activity within a DIVA PIM node. This section details the microarchitecture of this component 
by first presenting an overview of the instruction set architecture, followed by a description of 
the pipeline and discussion of special features.  More detail of the instruction set can be found in 
Appendix A1: DIVA Instruction Set Manual. 
 
Instruction set architecture overview 



 7

Much like the Hennessy and Patterson DLX architecture, most DIVA scalar instructions use a 
three-operand format to specify two source-registers and a destination register, as shown in 
Figure 4. For these types of instructions, the opcode generally denotes a class of operations, such 
as arithmetic, and the function denotes a specific operation, such as add. The C bit indicates 
whether the operation performed by the instruction execution updates condition codes. In lieu of 
a second source register, a 16-bit immediate value may be specified, as shown in Figure 5. The 
scalar instruction set includes the typical arithmetic functions add, subtract, multiply, and divide; 
logical functions AND, OR, NOT, and XOR; and logical/arithmetic shift operations. In addition, 
there are a number of special instructions, described in Special Features section below. 
Load/store instructions adhere to the immediate format, where the address for the memory 
operation is formed by the addition of an immediate value to the contents of rA, which serves as 
a base address. The DIVA scalar processor does not support a base-plus-register addressing 
mode because such a mode requires an extra read port on the register file for store operations. 
 

 
Figure 5. Scalar immediate instruction format 

 
Branch instructions use a different format. The branch target address may be PCrelative, useful 
for relocatable code, or calculated using a base register combined with an offset, useful with 
table-based branch targets. In both formats, the offset is in units of instruction words, or 4 bytes. 
By specifying the offset in instruction words, rather than bytes, a larger branch window results. 
To support function calls, the branch instruction format also includes a bit for specifying linkage, 
that is, whether a return instruction address should be saved in R31. The branch format also 
includes a 3-bit condition field to specify one of eight branch conditions: always, equal, not 
equal, less than, less than or equal, greater than, greater than or equal, or overflow. 
 
Pipeline description and associated hazards 
A high-level schematic of the pipeline execution control unit and scalar datapath is shown in 
Figure 6. The pipeline is a standard DLX-like 5-stage pipeline, with the following stages: (1) 
instruction fetch; (2) decode and register read; (3) execute; (4) memory; and, (5) write-back. 
Figure 6 indicates these five stages with respect to the data-path registers and also indicates the 
write-back and bypass datapaths. The pipeline controller contains the necessary logic to handle 
data, control, and structural hazards.  Data hazards occur when there are read-after-write register 
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dependences between instructions that co-exist in the pipeline. The controller and datapath 
contain the necessary forwarding, or bypass, logic to allow pipeline execution to proceed without 
stalling in most data dependence cases. The only exception to this generality involves the load 
instruction, where a "bubble" must be inserted between the load instruction and an immediately 
following instruction that uses the load target register as one of its source operands. 
 
Control hazards occur for branch instructions. Unlike the DLX architecture, which uses explicit 
comparison instructions and testing of a general-purpose register value for branching decisions, 
the DIVA design incorporates condition codes that may be updated by most arithmetic/logical 
instructions. The condition codes used for branching decisions are: 

• EQ - set if the result is zero 
• LT - set if the result is negative 
• GT - set if the result is positive 
• OV - set if the operation overflows 

 
The DIVA pipeline design imposes a 1-delay slot branch, so that the instruction following a 
branch instruction is always executed. Since branches are always resolved within the second 
stage of the pipeline, no stalls or bubbles are associated with branch instructions. 
 
Since the general-purpose register file contains 2 read ports and 1 write port, it may sustain two 
operand reads and 1 result write every clock cycle; thus, the register file design introduces no 
structural hazards. The only structural hazard that impacts the pipeline operation is the node 
memory. Pipeline stalls may occur in the instruction fetch stage if an instruction cache miss 
occurs. The pipeline will resume once the cache fill memory request has been satisfied. Likewise, 
stalls occur any time a load/store instruction reaches the memory stage of the pipeline until the 
memory operation is completed. 
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Figure 6. Scalar datapath and pipeline stages 

 
 
Special features 
The novelty of the DIVA scalar processor lies in the special features that support DIVA-specific 
functions. Although by no means exhaustive, this section highlights some of the more notable 
capabilities. 
 
Run-time Kernel Support 
The execution control unit supports supervisor and user modes of processing and also maintains 
a number of special-purpose and protected registers for support of exception handling, address 
translation, and general OS (Operating System) services. Exceptions, arising from execution of 
node instructions, and interrupts, from other sources such as an internal timer or external 
component like the PBUF, are handled by a common mechanism.   
 
The exception-handling scheme for DIVA has a modest hardware requirement, exporting much 
of the complexity to software, to maintain a flexible implementation platform. It provides an 
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integrated mechanism for handling hardware and software exception sources and a flexible 
priority assignment scheme that minimizes the amount of time that exception recognition is 
disabled. While the hardware design allows traditional stack-based exception handlers, it also 
supports a non-recursive dispatching scheme that uses DIVA hardware features to allow 
preemption of lower priority exception handlers.   
 
The impact of run-time kernel support on the scalar processor design is the addition of a modest 
number of special-purpose and protected (or supervisor-level) registers and a non-negligible 
amount of complexity added to the pipeline control for entering/exiting exception handling 
modes cleanly. When the scalar processor control unit detects an exception, the logic performs a 
number of tasks within a single clock cycle to prepare the processor for entering an exception 
handler in the next clock cycle. 
 
Those tasks include: 

• determining which exception to handle by prioritizing among simultaneously occurring 
exceptions, 

• setting up shadow registers to capture critical state information, such as the processor 
status word register, the instruction address of the faulting instruction, the memory 
address if the exception is an address fault, etc, 

• configuring the program counter logic to load an exception handler address on the next 
clock cycle, and 

• setting up the processor status word register to enter supervisor mode with exception 
handling temporarily disabled. 

 
Once invoked, the exception handler first stores other pieces of user state and interrogates 
various pieces of state hardware to determine how to proceed. Once the exception handler 
routine has completed, it restores user state and then executes a return-from-exception instruction, 
which copies the shadow register contents back into various state registers to resume processing 
at the point before the exception was encountered. If it is impossible to resume previous 
processing due to a fatal exception, the run-time kernel exception handler may choose to 
terminate the offending process. 
 
Interaction with the WideWord Datapath 
There are a number of features in the scalar processor design involving communication with the 
WideWord datapath that greatly enhance performance. The path to/from the WideWord datapath 
in the execute stage of the pipeline facilitates the exchange of data between the scalar and 
WideWord datapaths without going through memory. This capability distinguishes DIVA from 
other architectures containing vector units, such as AltiVec. This path also allows scalar register 
values to be used to specify WideWord functions, such as indices for selecting subfields within 
WideWords and indices into permutation look-up tables. Instead of requiring an immediate value 
within a WideWord instruction for specifying such indices, this register-based indexing 
capability enables more intelligent, efficient code design. 
 
There are also a couple of instructions that are especially useful for enabling efficient data 
mining operations. ELO, encode leftmost one, and CLO, clear leftmost one, are instructions that 
generate a 5-bit index corresponding to the bit position of the leftmost one in a 32-bit value and 
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clear the leftmost one in a 32-bit value, respectively. These instructions are especially useful for 
examining the 32-bit WideWord condition code register values, which may be transferred to 
scalar general-purpose registers to perform such tests. For instance, with this capability, finding 
and processing data items that match a specified key are accomplished in much fewer 
instructions than a sequence of bit masking and shifting involved in 32 bit tests, which is 
required with conventional processor architectures. 
 
There are some variations of the branch/call instructions that also interact with the WideWord 
datapath. The BA (branch on all) instruction specifies that a branch is to be taken if the status of 
condition codes within every subfield of the WideWord datapath matches the condition specified 
in the BA instruction. The BN (branch on none) instruction specifies that a branch is to be taken 
if the status of condition codes within no subfield of the WideWord datapath matches the 
condition specified in the BN instruction. With proper code structuring around these instructions, 
inverse forms of these branches, such as branch on any or branch on not all, can also be affected. 
 
Miscellaneous Instructions 
There are also several other miscellaneous instructions that add some complexity to the 
processor design. The probe instruction allows a user to interrogate the address translation logic 
to see if a global address is locally mapped. This capability allows users who wish to optimize 
code for performance to avoid slow, overhead-laden address translation exceptions. Also, an 
instruction cache invalidate instruction allows the supervisor kernel to evict user code from the 
cache without invalidating the entire cache and is useful in process termination cleanup 
procedures. Lastly, there are versions of load/store instructions that “lock” memory operations, 
which are useful for implementing synchronization functions, such as semaphores or barriers. 
 
4.1.2 Microarchitecture: The WideWord Processor 
The combination of the execution control unit and WideWord datapath is regarded as the 
WideWord Processor. This component enables superword-level parallelism on wide words of 
256 bits, similar to multimedia extensions such as MMX and AltiVec. This fine-grain parallelism 
offers additional opportunity for exploiting the increased processor-memory bandwidth available 
in a PIM. Selective execution, direct transfers to/from other register files, integration with 
communication, as well as the ability to access main memory at very low latency, distinguish the 
DIVA WideWord capabilities from MMX and AltiVec. This section details the 
microarchitecture of this component by first presenting an overview of the instruction set 
architecture, followed by a brief description of the pipeline. More detail can be found in 
[Draper02a]. 
 
WideWord Instruction set architecture 

 
 

Figure 7. WideWord instruction format 
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As shown in Figure 7, most DIVA WideWord instructions use a three-operand format to specify 
two 256-bit source registers and a 256-bit destination register. The opcode generally denotes a 
class of operations, such as arithmetic, and the function denotes a specific operation, such as add 
or subtract. The C bit indicates whether the operation performed by the instruction execution 
updates condition codes. The W field indicates the operand width, allowing WideWord data to 
be treated as a packed array of objects of eight, sixteen, or thirty-two bits in size. This 
characteristic means the WideWord ALU (Arithmetic Logic Unit) can be represented as a 
number of variable-width parallel ALUs. The P field indicates the participation mode, a form of 
selective subfield execution that depends on the state of local and neighboring condition codes. 
Under selective execution, only the results corresponding to the subfields that participate in the 
computation are written back, or committed, to the instruction's destination register. The 
subfields that participate in the conditional execution of a given instruction are derived from the 
condition codes or a mask register, plus the instruction's 2-bit participation field.   
 
The WideWord instruction set consists of roughly 30 instructions implementing typical 
arithmetic instructions like add, subtract, and multiply; logical functions like AND, OR, NOT, 
XOR; and logical/arithmetic shift operations. In addition, there are load/store and transfer 
instructions that provide for rich interactions between the scalar and WideWord datapaths. 
 
Some special instructions include permutation, merge, and pack/unpack. The WideWord 
permutation network supports fast alignment and reorganization of data in wide registers. The 
permutation network enables any 8-bit data field of the source register to be moved into any 8-bit 
data field of the destination register. A permutation is specified by a permutation vector, which 
contains 32 indices corresponding to the 32 8-bit subfields of a WideWord destination register. A 
WideWord permutation instruction selects a permutation vector by either specifying an index 
into a small set of hard-wired commonly used permutations or a WideWord register whose 
contents are the desired permutation vector. The merge instruction allows a WideWord 
destination to be constructed from the intermixing of subfields from two source operands, where 
the source for each destination subfield is selected by a condition specified in the instruction. 
This merge instruction effects efficient sorting. The pack/unpack instructions allow the 
truncation/elevation of data types and are especially useful in pixel processing. 
 
Pipeline description 
Identical to and tightly integrated with the scalar pipeline, the pipeline of the WideWord datapath 
is a standard DLX-like 5-stage pipeline, with the following stages: (1) instruction fetch; (2) 
decode and register read; (3) execute; (4) memory; and, (5) writeback. Data hazards occur when 
there are read-after-write register dependences between instructions that co-exist in the pipeline.  
The controller and datapath contain the necessary forwarding, or bypass, logic to allow pipeline 
execution to proceed without stalling in most data dependence cases. Register forwarding is 
complicated somewhat by the participation capability. Participation status must be forwarded 
along with each subfield to effect correct forwarding. 
 
4.2 VLSI Development 
From a host of potential foundries for fabrication, the selections were quickly narrowed down to 
two possible embedded DRAM candidates early in the DIVA project: IBM and TSMC. IBM 
clearly had more experience in the embedded DRAM arena, so early efforts in the DIVA VLSI 
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development task targeted the IBM CMOS7LD 0.25∝m embedded DRAM process, and a scalar 
processor test chip was fabricated in HP CMOS14 0.5∝m technology through MOSIS. (The HP 
process was used for early prototyping because its logic speed matched that of the IBM process, 
and prototypes could be built very cheaply through this route.) A test vehicle on the TSMC 
0.25∝m process was also fabricated to gain familiarity with that technology. Although the DIVA 
team entered into a research collaboration contract with the Blue Gene team at IBM Watson, the 
DIVA project was not granted access to IBM fabrication capability in a timely manner. 
Therefore, in the final half of the project, the VLSI development for the integrated PIM 
prototype targeted the TSMC 0.18∝m process. This process was introduced with an embedded 
DRAM capability, but that capability was later phased out, so the DIVA prototype PIM was 
fabricated with SRAM (Synchronous Random Access Memory) as a placeholder for embedded 
DRAM. 

 
 

Figure 8. Prototype PIM signal summary 
 
As part of the core VLSI development task, a new CAD tool flow was installed. To 
accommodate rapid design of the PIM chip, we relied heavily on the ability to specify the chip 
design with RTL-level VHDL and synthesize this description into a gate-level netlist of standard 
cells. The VHDL was optimized and synthesized using Synopsys Design Analyzer, targeting the 
Artisan standard cell library for TSMC 0.18∝m technology. The entire chip was placed and 
routed, including clock tree routing, with Cadence Silicon Ensemble. Physical verification, 
including DRC, LVS, and antennae checking, was performed with Mentor Calibre. Back-
annotated simulation to verify correct operation and timing of the design was performed within 
the Cadence Verilog environment. 
 
A description of the external signals of the first prototype PIM chip is shown in Figure 8. There 
are primarily two external interfaces: a host interface for implementing the JEDEC SDRAM 
standard and the PiRC signals for inter-PIM communication. Additionally, there are signals for 
configuring and monitoring the PLL (Phase Locked Loop) clock multiplier, testing the node 
SRAMs, and reset and interrupt capabilities.   
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This prototype chip implements one PIM node (consisting of a 32-bit scalar processor, 256-bit 
WideWord Unit, 4Kbyte instruction cache, 8Mbit node SRAM, and node parcel buffer), PIM 
routing component (PiRC), and host interface (containing an external SDRAM interface and host 
parcel buffer). The design was submitted on August 23, 2001 for fabrication on a TSMC 0.18∝m 
generic process offered through MOSIS. The intellectual property used in the chip design is from 
three different vendors: 

• Artisan 
o standard cells for synthesized logic 
o pads 
o 32-word x 32-bit scalar register file 
o 32-word x 256-bit WideWord register file (implemented as two x128 banks) 
o 4kbyte SRAM for instruction cache core (implemented as two banks of 
o 128 word x 128-bit SRAMs) 
o 128 word x 20-bit SRAM for instruction cache tags 

• Virage Logic 
o 8 Mbit SRAM (with redundancy to allow repair) (implemented as two banks of 

32768 words x 128 bits) 
o fuse boxes for the configuration of the SRAM 

• NurLogic 
o PLL for clock multiplication and deskewing 

 
The resulting chip is 9.8mm on a side and contains approximately 200,000 placeable objects, 
where a placeable object is anything from a 2-transistor inverter to a 4 Mbit SRAM macro. The 
chip contains approximately 55 million transistors, with 2 million in the logic and smaller 
SRAMs and 53 million in the 8 Mbits of node SRAM. The chip contains 352 pads: 240 signal 
I/O, 56 grounds, 28 pad Vdd (3.3V), and 28 core Vdd (1.8V). 
 
The silicon die were received near the end of October 2001, and packaged chips were received 
near the end of November 2001. Photos of the die and package are shown in Figure 9. Due to 
delays in procurement of test fixtures, full-scale testing did not commence until February 2002. 

 
Figure 9. DIVA PIM prototype chip 

 
The preliminary testing was conducted with the use of a custom-built PCB in an incremental 
fashion. First, with all functional units in reset, we applied power and an input clock signal to test 
the PLL clock multiplier, IP purchased from NurLogic.  The PLL was functional over a wide 
range of frequencies, voltages, and all possible configurations of input settings. This verification 
proved that we had successfully integrated IP from a 3rd-party vendor into our design flow. We 

ova 
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then proceeded to functional testing with the use of an HP 16702A logic analysis system. Pattern 
generator modules were utilized to apply test vectors to the inputs of the chip, and timing/state 
capture modules were used to sense the outputs of the chip. A photo of the lab test setup is 
shown in Figure 10. The chip was tested for functionality at a testbench speed of 80MHz. 
 

 
Figure 10. PIM testbench setup 

 
We first verified the operation of the memory access capability of the PIM chip by performing 
writes/reads to the internal memory through the host memory interface of the PIM chip. After 
verifying normal memory operation for the lowest 64KB region of memory, we proceeded to 
PIM processor checkout. The procedure consisted of downloading code through the host 
memory interface, releasing the PIM processor from reset to execute the code, and then verifying 
correct operation by reading back results through the host memory interface. After confirming 
the validity of this debugging approach through a small arbitrary code example, we proceeded to 
test the execution of the Cornerturn core loop, which had been coded to exploit novel features of 
the DIVA PIM WideWord Unit. Reading the memory locations that contained the output matrix 
and verifying that the input matrix had indeed been transposed confirmed successful execution of 
the code. (The logic analyzer display showing the start of the transposed matrix is shown in 
Figure 11).  We then began some speed testing to determine the clock frequency operating range 
of the PIM chip. We were able to execute the Cornerturn application at 160MHz while 
dissipating only 800mW. Even in this limited test setup, the chip achieved a peak 1.28GOPS (32-
bit ops) and 5.12 GB/s memory bandwidth. After passing these initial tests, the chip was released 
to the system integration team where many more results were achieved (refer to the system 
integration section for details). 
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Figure 11. Display of read operation “cornerturn” output matrix 

 
4.3 Ongoing and Future Work 
While finishing preparations for testing the first chip, we were also working on the designs of the 
address translation unit and floating point capability for the second turn of the chip. The address 
translation was completed and integrated into the existing design and validated through 
simulation, including exception handling related to address faults within a few months. After 
performing some initial sizing estimates, we realized that we would not be able to fit 4 parallel 
double-precision floating-point units in our WideWord area budget, so we targeted 8 single-
precision units. As technology continues to scale, future PIMs may revisit the possibility of 
WideWord double-precision capability. Each single-precision unit implements the basic floating-
point functions: add, subtract, multiply divide. We used the MIT RAW design as a guideline, but 
due to DIVA pipeline constraints were not able to use the RAW design as is. We spent most of 
our time on the design of the divider and then optimizing to merge the subcomponents to share 
resources that all subcomponents need, such as operand formatting, rounding, and normalization.  
We selected a divider design based on a Taylor series expansion approach developed by 
Liddicoat at Stanford [Liddicoat02]. This design achieved a fairly high-performance divide 
capability while minimizing silicon area. We synthesized the entire FPU (Floating Point Unit) 
design, and the resulting post-synthesis area projections indicated an area of 0.32 mm2 for each 
single-precision floating-point unit, or a total of approximately 2.5 mm2 for eight such units in 
the WideWord datapath. 
 
We re-architected the exception-handling unit to accommodate integration of the exceptions 
from the WideWord floating-point units. Each of the eight single-precision floating-point units 
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of the WideWord datapath reports five types of exceptions: divide by zero, inexact, invalid, 
overflow, and underflow. The only inconsistency with the IEEE-754 standard is the underflow 
exception, which we use in place of supporting denormalized numbers and arithmetic. We have 
combined the overflow and underflow status outputs into one value called precision status so that 
the resulting 4 exception types of all 8 single-precision FPUs can be contained in one 32-bit 
register. We have defined a new special-purpose register (SPR) in our architecture to capture this 
information. 
 
Work is now continuing under separate funding to implement the exception integration and 
thereby complete the integration of floating-point capability into the DIVA design. Under the 
HPCS-funded Godiva project, a DDR SDRAM interface is also being added to the rev 2 PIM 
chip for its insertion into an Itanium2-based HP Long’s peak server. 
 
5. Compiler 
We have developed a compiler for the DIVA PIM processor that generates optimized code in the 
DIVA ISA. As will be discussed in the context of system integration, the DIVA compiler 
backend is based on the Gnu GCC compiler, ported from the PowerPC toolset. GCC is a 
commonly used optimizing compiler, but it targets conventional scalar instruction sets. To 
support optimizations targeting the unique bandwidth-exploiting features of the DIVA ISA, we 
developed front-end compiler technology that performs DIVA-specific optimizations, as 
captured in Figure 12. 

 
 

Figure 12. DIVA-specific compiler optimizations 
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In Figure 12, the ovals represent the functional units of the DIVA PIM chip. As has been 
previously described in the architecture discussion, there are both a 32-bit scalar functional unit 
and a separate 256-bit wide functional unit. The shaded rectangles in the figure represent on-chip 
storage. There is the DRAM array, which in today’s technology could have up to 32Mbytes, 
although in our prototype it is a 1Mbyte SRAM array, as previously described. A 4Kbyte I-cache 
holds the instruction stream, so that memory accesses are predominantly focused on the program 
data. In addition, there are separate register files associated with each functional unit, a 32-
element, 32-bit scalar register file, and a 32-element, 256-bit wide register file.   
 
The unshaded rectangles in the figure point to our compiler’s targets of optimization. DIVA’s 
Wide functional unit has operations similar to a multimedia extension architecture such as the 
PowerPC AltiVec, where the data type is larger than a machine word, and can be configured to 
perform SIMD parallel operations on different field widths, 8-bit, 16-bit and 32-bit. This type of 
fine-grain parallelism is referred to as superword-level parallelism (SLP). Optimizations 
targeting SLP are the first priority of our compiler. The second priority relates to the WideWord 
register file, which is 1Kbyte of storage very close to the processor, and the fact that our 
architecture does not have a data cache. Our target applications that can exploit the bandwidth of 
the WideWord datapath could also benefit from the increased bandwidth and lower latency of a 
data cache, as compared to accessing from the DRAM array. For this same class of applications, 
however, compiler technology can also derive the data access patterns and manage storage 
explicitly. For this purpose, we have developed new optimizations in the DIVA compiler to 
support compiler-controlled caching in the WideWord register file. Further optimization benefits 
are obtained from exploiting spatial locality in the DRAM array. When the application accesses 
memory, the latency of a memory access varies depending upon whether the access is nearby the 
previous access. The DRAM first selects a page or row (assumed to be 2048 bits) and then a 
256-bit or 32-bit column within that row. Accesses to the same row as the previous access are 
referred to as pagemode accesses, and have a 3x lower latency than other accesses, which are 
said to be in random mode. Our compiler performs optimizations to maximize the number of 
memory accesses that are in page mode. 
 
Figure 13 illustrates the components of the DIVA compiler. The DIVA front-end compiler is 
based on SUIF, a research compiler infrastructure developed at Stanford University. The SUIF-
based DIVA front end takes as input a C or Fortran program and generates optimized code in 
MrC, a C-like language with extensions for superword-level parallelism developed for the 
PowerPC AltiVec. The optimized MrC code is the input to the DIVA compiler backend, as 
shown in Figure 13. 
 
The DIVA compiler backend is based on a superword-extended AltiVec GCC backend available 
from Motorola. The AltiVec GCC backend takes MrC code and generates AltiVec vector 
instructions similar to DIVA WideWord instructions. To generate DIVA PIM code, we 
integrated the DIVA GCC backend that previously generated DIVA scalar code only with the 
AltiVec GCC backend. The final DIVA GCC backend generates code that uses both PIM scalar 
and WideWord instructions. 
 
Figure 13 shows the DIVA GCC backend and the AltiVec GCC backend for illustration purposes, 
as both take optimized code from the SUIF-based front-end compiler. The AltiVec backend was 
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a useful tool for testing and tuning optimizations performed by the SUIF-based front-end 
compiler during the time the DIVA PIM chip was not yet available for software experiments.   
 
The remainder of this section describes the optimizations performed by our frontend compiler, 
the implementation, and performance results. 
 

 
 

Figure 13. DIVA PIM Compiler Technology 
 
5.1 DIVA PIM front-end compiler 
To develop a DIVA PIM compiler that automatically generates optimized code targeting 
superword-level parallelism, we have collaborated with Saman Amarasinghe and Samuel Larsen 
at MIT. The initial MIT SUIF-based compiler automatically recognizes SLP and generates 
optimized code targeting the PowerPC AltiVec multimedia instructions. The DIVA compiler is 
built upon the MIT-SLP implementation and generates code targeting DIVA’s WideWord 
instructions. 
 
In addition to superword-level parallelism, the DIVA SUIF-based compiler performs 
optimizations for compiler-controlled caching in the wide register file. We developed and 
implemented new analyses for identifying temporal and spatial reuse of data in loop nest 
computations. Our compiler performs a new optimization called superword replacement, 
whereby accesses to superwords in memory are replaced by accesses to temporary registers, so 
that the DIVA backend register allocator tries to keep these temporaries in wide registers. This 
approach adapts related techniques for exploiting temporal reuse in scalar registers, but must also 
account for parallelism and spatial reuse. 

fIF-based front-end 
compiler 
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The DIVA SUIF-based front-end compiler automatically generates optimized MrC code for six 
scientific/multimedia benchmarks: TOMCATV and SWIM from the SPEC'95 benchmark suite, 
and the media kernels VMM (vector-matrix multiply), MMM (matrix-matrix multiply), FIR 
(Finite Impulse Response Filter) and YUV (RGB to YUV conversion). 
 
We also completed an implementation and experiment in our DIVA compiler to automatically 
reorder memory accesses to achieve page-mode memory accesses, rather than random-mode 
memory accesses, and thus greatly reduce memory latency. The compiler unrolls inner loops and 
reorders memory accesses when there are no data dependencies that prevent doing so, such that 
accesses within the same page are performed consecutively. On four of the above benchmarks, 
VMM, MMM, YUV and FIR, we observed speedups ranging from 1.25 to 2.19X on the DIVA 
simulator, as compared to not performing the reordering of memory accesses. This work has 
been reported in two publications [Chame00][Shin02b].   
 
Under DIVA funding, we also began an evaluation of requirements to extend MIT-SLP so that it 
can parallelize more programs of interest, such as the DIS Transitive Closure stressmark and 
NAS CG. We have identified the need to extend MIT-SLP to support parallelization of 
constructs containing conditionals for Transitive Closure, and to optimize movement of data 
between scalar and wide register files, since movement between register files is not supported in 
the AltiVec. 
 
5.2 DIVA PIM backend compiler 
As the AltiVec GCC backend was an experimental and unsupported system, we encountered a 
number of challenges in merging the DIVA GCC backend with the AltiVec component. 
Determining which GCC patches to integrate and which to omit required a lot of information 
gathering and trial-and-error. We successfully completed the integration, and began porting the 
AltiVec GCC backend to generate DIVA WideWord code. Under DIVA funding, we 
implemented a subset of DIVA WideWord instructions and the GCC backend generated 
WideWord code for VMM, a kernel that performs a vector-matrix multiply. The AltiVec version 
of the compiler has generated code for many more applications, as discussed in more detail 
below. 
 
We have performed extensive experiments with the optimized code generated by our compiler, 
for both DIVA and AltiVec. The experiments were performed both in an instruction simulator of 
the DIVA ISA and in the PowerPC G4 (with an AltiVec).  The optimizations for data reuse in 
WideWord registers result in a reduction in scalar memory accesses of over 90% for the four 
kernels and over 35% in SWIM and TOMCATV. In addition, we observe a reduction of 
WideWord memory accesses of over 50% for three of the four kernels, and over 85% in SWIM 
and TOMCATV. These reductions indicate that even more improvement can be expected on 
DIVA, where there is no data cache. On the AltiVec, overall we are showing speedups ranging 
from 1.7X to 12.3X over scalar execution, with an average of 4.2X. Speedups due to our 
compiler optimizations for compiler-controlled caching go from 1.3 to 2.8, with an average of = 
2.2, over the MIT-SLP compiler upon which we base our implementation. This work has been 
reported in three publications [Chame00][Shin02a] [Shin03]. 
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5.3 Additional Compiler Research 
Beyond the node compiler implementation, we planned a long-term strategy for system-level 
compilation (i.e., host and multiple PIMs) that is being pursued under separate funding. As was 
discussed in the context of the DIVA system architecture, we designed DIVA such that it could 
be programmed using conventional solutions from parallel computing, rather than requiring a 
programming paradigm specific to DIVA or to PIMs.  As a system-level programming strategy, 
we have adopted Unified Parallel C (UPC), a relatively new parallel programming language. 
UPC was developed as a unification of the best ideas among several research C compilers that 
support a global address space, and allow high-level specification of data distribution in an 
SPMD (Single Program Multiple Data) abstraction for highend shared-memory, distributed-
shared-memory and even distributed-memory parallel systems. The development of the UPC 
language and its implementations has been motivated by DoD interest and support. There are 
several commercial UPC compilers, and there are a number of defense applications already 
written in UPC. We chose UPC for all these reasons, as well as the fact that we can develop 
DIVA target applications that are pointer-based in a C-based language, but cannot in other 
parallel programming languages such as, for example, CoArray Fortran. 
 
As part of future work, we are collaborating with Lawrence Berkeley Laboratories and UC 
Berkeley to develop a UPC compiler for the DIVA prototype. They have an ongoing UPC 
compiler effort, to develop a portable UPC compiler. 
 
6. System Simulator 
We developed a simulator of the DIVA system architecture that was used throughout the 
duration of the project for several application and architectural studies. Among these studies 
were the investigation of performance of data-intensive applications on DIVA, the analysis of 
architectural design trade-offs and bottlenecks and studies that evaluated and provided feedback 
to the design of the DIVA Instruction Set Architecture (ISA).   
 
The DIVA system simulator (DSIM) uses RSIM (http://rsim.cs.uiuc.edu/rsim) as a framework, 
with significant extensions. RSIM is an event-driven simulator that models shared-memory 
multiprocessors built with state-of-the-art multiple-issue, out-of-order superscalar processors. 
DSIM extensions include a simpler PIM processor with a WideWord unit, the DIVA memory 
system, the parcel communication mechanism and the PIM-to-PIM interconnect. DSIM supports 
the DIVA PIM ISA. 
 
The DSIM host processor is taken directly from RSIM, as well as the host first and second-level 
caches. The host processor architecture is based on the MIPS R10000, which is configured as a 
four-issue processor with two integer arithmetic units, two floating-point units and one address 
unit. Loads are non-blocking. It has a 32Kbyte L1 and a 1Mbyte L2 cache, both two-way 
associative, with access times of 1 and 10 cycles, respectively. Both L1 and L2 caches are 
pipelined and support multiple outstanding requests to distinct cache lines. 
 
The host is connected to the DIVA memory system via a split-transaction, 64-bit bus. The 
memory system consists of the aggregation of all PIM memories, where each local memory is 
visible from both host and local PIM processor. DSIM maintains the current open row of each 
memory bank to determine the memory access type (page or random mode) and simulates 
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arbitration between host and PIM accesses. The memory latencies seen by the host are 52 cycles 
for page-mode accesses and 60 cycles for random mode, and include the bus transfer delay, the 
memory arbitration time and the DRAM access time (4 and 12 cycles for page and random mode, 
respectively). The memory latencies seen by the local PIM processor, including arbitration and 
DRAM access times, are 6 and 14 cycles for page- and random-mode accesses, respectively. 
 
DSIM also models the parcel mechanism and the PIM-to-PIM interconnection in detail. 
Applications executing on DSIM have direct access to the parcel buffers via parcel handling 
functions that perform the writing/reading to/from the memory mapped parcel buffers. These 
parcel handling functions are part of DSIM's application library, and support the full set of parcel 
buffer status reads, triggering/non-triggering writes to the send parcel buffers and 
destructive/nondestructive reads from the receive parcel buffers.   
 
The application library also supports a cache-line-flush function to enforce coherence between 
the host caches and PIM memory, and synchronization functions. The functions in the 
application library are linked with the application code, and their execution is simulated by 
DSIM as part of the application. 
 
The simulator parameters used in our application studies were based on the conservative 
assumption that the PIM processor runs at half the speed of the host processor. Although the 
inherent speed of the logic is no slower, we make this assumption because the WideWord 
register accesses could impact the clock speed. 
 
7. Application Studies 
We performed several application studies, using the DIS Stressmark Suite as well as other data-
intensive or high-performance-computing benchmarks, including NAS CG and the template-
matching (TM) component of the Sandia ATR benchmark. We first describe the DIVA 
implementations of the DIS stressmarks, then we present experimental results on the stressmarks 
and other benchmarks, and later we discuss our earlier application studies. 
 
7.1 DIS Stressmarks 
This section contains a description of our implementation of the Cornerturn, Pointer, Transitive 
Closure and Neighborhood stressmarks. For each of these stressmarks, we describe how the 
stressmark is mapped to DIVA, including computation and data partitioning, host-and-PIM and 
PIM-to-PIM communication and synchronization. We also describe how the WideWord unit is 
used, when applicable (Pointer and Neighborhood do not use the PIM WideWord unit). 
 
Cornerturn. 
The DIVA implementation of Cornerturn performs a hierarchical matrix transpose, where the 
matrix is partitioned into blocks and each block is assigned to a PIM node. The transpose of each 
block is computed by partitioning the block into sub-blocks, which are then transposed in 
WideWord registers using permutation operations. We present below a simplified 
implementation, which is valid for square matrices only.  
 
The host performs the initial block partitioning, keeping a table with the assignment of blocks to 
PIMs, and coordinates synchronization between host and PIMs. In the first phase of the 
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computation, each PIM computes the transpose of its local block.  After that each pair of PIMs 
owning blocks that need to be swapped to form the transposed matrix communicate using the 
PIM-to-PIM network. 
 
The local block transpose is performed as a set of transposes of 8x8 sub-blocks (except for block 
sizes that are not multiple of the number of matrix elements that fit in a WideWord register). For 
the out-of-place transpose, each 8x8 sub-block is loaded into the WideWord register file (an 8x8 
matrix with 32-bit elements requiring 8 WideWord registers), and transposed via a sequence of 
permutation operations. The transposed sub-block is then stored back in memory at the target 
location. In the in-place transpose (of square blocks) two subblocks of size 8x8 are loaded in 
WideWord registers, each sub-block is transposed in registers, and then the transposed sub-
blocks are stored back in memory, swapping locations to form the transposed block. This 
implementation takes advantage of the large capacity of the WideWord register file, avoiding 
loads and stores to memory during the transpose of each 8x8 sub-block. 
 
After computing its local transposed block, each PIM exchanges its transposed block with the 
PIM that owns the location of the block in the transposed matrix. For example, for a square 
matrix divided into four blocks where block-00 is assigned to PIM-0, block-01 to PIM-1, block-
10 to PIM-2 and block-11 to PIM-3, PIM-1 exchanges its transposed block with PIM-2. PIM-0 
and PIM-3 keep their transposed blocks since they should remain in the same location in the 
transposed matrix. 
 
The communication phase is performed in 2 steps: in the first step PIMs owning blocks in the 
upper triangular sub-matrix send their blocks to PIMs owning blocks in the lower triangular sub-
matrix; the second step completes the exchange of blocks with PIMs in the lower triangular sub-
matrix sending blocks to PIMs in the upper triangular sub-matrix. 
 
Finally, this implementation of Cornerturn avoids contention on the PIM-to-PIM network by 
assigning each pair of blocks that will exchange locations in the transposed matrix to neighbor 
PIMs. This assignment is based on the fact that communication occurs between fixed pairs of 
PIMs, and that when assigning a block to a PIM it is possible to determine the location of its 
transposed block in the transposed matrix, and then assign the block corresponding to this 
location to the nearest PIM available. 
 
Our HOST version of Cornerturn shows high memory stall times for input sizes that do not fit in 
the host L2 cache. This application has very little temporal reuse, since each matrix element is 
accessed a few times only during each matrix transpose.  Thus primarily spatial reuse is 
exploited in cache, and each new cache line is only reused a few times. In the PIM version, the 
WideWord datapaths also exploit the available spatial reuse. Furthermore, the WideWord 
loads/stores and operations on eight matrix elements at a time also reduce the number of accesses 
to memory.  Finally, the latency seen by the PIM processor is lower than that suffered by the host 
for large input sizes. For example, a 1024x1024 matrix is four times larger than the host L2 
cache, resulting in memory stall times corresponding to 98% of the host execution time. On the 
other hand, the 1-PIM version spends 40% of the execution time stalled for memory, due to the 
lower on-chip latencies and a reduction on the number of memory accesses (the average latency 
seen by the PIM is 11.6 cycles, since most of the accesses are in random mode). 
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Transitive Closure 
The implementation of Transitive Closure for DIVA is based on the DIS sample code, and uses a 
dense matrix to represent the distance graph. It exploits both fine-grain parallelism, by 
performing WideWord arithmetic operations on eight 32-bit elements of the matrix in parallel, 
and coarse-grain parallelism, by partitioning the data and computation among PIM nodes. 
 
The host processor computes the matrix partition and coordinates synchronization. Matrices din 
and dout are partitioned by rows and a set of consecutive rows is assigned to each PIM node. For 
the main loop nest of Transitive Closure, for each iteration of the outer loop k, each PIM node 
performs the inner-loop computation (loops i and j) on its local set of rows, using a copy of row k 
previously sent by the PIM that owns row k. Therefore, for each iteration of loop k, the PIM node 
that owns row k sends a copy of this row to all other PIMs. All PIM nodes synchronize on each 
iteration of loop k, after the communication phase. 
 
The multicast of a matrix row from one PIM to all other PIMs is performed using the multicast 
mode supported by the DIVA parcel buffer mechanism. The sender processor writes a parcel 
payload to the parcel buffer, and then writes a parcel header for each destination PIM. The write 
to the parcel header triggers the sending of the parcel to the specified destination. This multicast 
mode allows the sender processor to write the parcel payload only once, reducing the cost of 
assembling parcels in the parcel buffer. 
 
The local computation on each PIM node takes advantage of the WideWord unit in the 
computation of the minimum value of each pair of elements from two matrix rows. Selective 
execution using a WideWord operation (wmrgcc) merges the contents of two WideWord 
registers according to condition-code bits, allowing an efficient computation of the minimum 
value of each pair of elements of two WideWord operands. 
 
Finally, for both the HOST and PIM versions, the inner loops (loops i and j) of the main loop 
nest were interchanged, so that the HOST can benefit from spatial locality at the caches, and 
PIMs can exploit spatial reuse in WideWord registers. 
 
Our PIM implementation benefits from fine-grain and coarse-grain parallelism, and also from the 
higher bandwidths available on chip. For example, the HOST version for input tc05.in spends 
65.2% of its execution time stalled due to cache misses, with 11.3% of the misses satisfied at the 
L1 and 58.4% satisfied at the L2, resulting in an average memory latency of 6.7 cycles. The 1-
PIM version shows a higher average memory latency (9.5 cycles), but it issues less memory 
accesses, since the WideWord unit is used to transfer data to/from memory and perform the 
computation. Therefore the 1-PIM memory stall time is smaller than that of the HOST version. 
The use of the WideWord unit also results in exploiting spatial reuse, since the matrix is 
accessed with stride one in the row dimension. 
 
Pointer 
Our implementation of Pointer is based on the sample code provided by Atlantic Aerospace. We 
mapped Pointer to DIVA by partitioning both threads and the field array among PIM nodes. To 
reduce communication costs, PIM nodes are partitioned into groups so that each group has a 
copy of the array; the size of each group is the minimum number of PIM nodes required to keep 
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one copy of the array. For example, for a 4 MByte array and 16 PIM nodes, and assuming that 
each PIM node can keep 2 MBytes of data, the PIMs would be partitioned into 8 groups of 2 
PIMs, each group keeping a copy of the array. 
 
Each PIM node is initially assigned a set of threads. Each PIM node starts a thread (from its own 
set) and proceeds as follows: 

1. When a ``hop" is to a location mapped to the PIM, it computes the median and next hop 
as in the original sample code. 

2. When a ``hop" is to a location mapped to a remote PIM node, it sends the ``hop"(in a 
parcel) to the remote node, which will then continue hoping on this thread. 

3. After sending a remote hop out, the PIM checks if it has received any parcels containing 
``hops" to be executed locally. If there is a parcel, it goes to step 1. 

4. When a thread is completed, the PIM node that executed the last hop marks the thread 
``done" and sends a parcel to the PIM that owns that thread signaling that the thread is 
done. 

Finally, the host processor checks for threads that are done and signals the PIMs when all threads 
are done. 
 
In our experiments, the HOST version performs better than the 1-PIM version when the input 
size fits in the host L1 or L2 caches (as in p05.in and p20.in). The PIM version performs better 
than the host version when the input data set fits in one PIM node and does not fit in the host 
cache (such data is not reported since none of the DIS input sizes satisfies this condition). Our 
PIM version of Pointer does not speedup when the array must be partitioned among PIMs. The 
main reason our Pointer does not scale well is that the rate of communication per hops is very 
small, and the local computation (an average of a couple of hops) is not enough to amortize the 
cost of PIM-to-PIM communication. 
 
Neighborhood 
The Neighborhood implementation on DIVA exploits coarse-grain parallelism by partitioning 
the computation among PIM nodes. Each PIM computes a partial histogram locally, and at the 
end of the computation phase, the PIM nodes perform a parallel reduction to compute the final 
histogram. The parallel reduction takes n-1 steps, where n is the number of PIM nodes. The 
communication is scheduled to take advantage of the PIM-to-PIM interconnection topology (bi-
directional ring), avoiding contention in the network. 
 
The 1-PIM version of Neighborhood performs worse than the host version when the image fits in 
the host L2 cache, for several reasons: the memory latencies seen by the PIM are larger than the 
L2 access time; the PIM nodes operate at half the speed of the host; and our implementation of 
Neighborhood does not take advantage of the WideWord unit. When coarse-grain parallelism is 
exploited by partitioning the computation among several PIM nodes, the PIM version speeds up 
considerably with respect to the host. 
 
7.2 Experimental evaluation 
1-PIM performance 
To measure the performance potential of the DIVA architecture, we examine in detail eight 
benchmark applications, summarized in the Table 1. 
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Table 1. Summary of the eight benchmark applications 

 
 
These applications span a broad range of domains including scientific computing, databases and 
image processing. They exhibit both coarse grain parallelism (which allows computation to be 
spread across PIMs) and, in some cases, fine grain parallelism (which can be exploited through 
execution in the WideWord unit). CG, Neighborhood, Pointer, OO7 and Natural Join exhibit 
irregular or mixed (regular and irregular) data access patterns, resulting in high memory access 
overheads on conventional architectures. Cornerturn, Transitive Closure and Template Matching 
are dense matrix computations with regular access patterns, although memory bandwidth 
becomes a limiting factor in exploiting the significant available parallelism. These three and CG 
rely on the WideWord unit to exploit parallelism and PIM bandwidths. Hereon, we use 
abbreviations for each of the program names, with a suffix -H for host and -P for PIM. 
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The graph in Figure 14 summarizes 1-PIM performance as compared to execution on the 
conventional host processor. Five of the eight programs speed up significantly compared against 
host execution, two remain about the same, and one program is slowed down. (All programs 
speed up when multiple PIMs are used.)  Overall, the average speedup is 3.39X. 

 
Figure 14. Summary of 1-PIM performance relative to host 

 
Several factors contribute to these speedups, including the lower memory stall times on the PIM 
nodes and the benefits of the WideWord unit in exploiting fine-grain parallelism and taking 
advantage of page-mode memory. These factors are discussed in detail in the subsections that 
follow. 
 
Reduction in Memory Stall Time 
To illustrate the impact of memory latencies on the applications’ total execution times, Figure 15 
shows the busy and memory stall components of host only execution. We see from the figure 
that five of the eight programs spend more than 40% of their time stalled in memory accesses. 

 
Figure 15. Host-only busy and memory stall times for the eight programs 
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PIMs reduce memory stall time in two ways: (1) lower latency to memory; and, (2) higher 
bandwidth to memory through wide loads and stores. (A third reduction occurs as a result of 
coarse-grain parallelism across the PIMs.) DIVA achieves a reduction in memory stall time for 
these five programs ranging from 13.89% for Natural Join to 95% for Cornerturn, as shown in 
Figure 16. 

 
Figure 16. Memory stall times of host-only and 1-PIM execution 

 
The host version of Template Matching (TM-H) has a memory stall time of only 3% of its total 
execution time. The reason is that the data set size fits in the L2 host cache and the working set 
of each loop fits in the L1 cache, and therefore the data reuse exhibited by TM is effectively 
exploited. Even though TM-H does not suffer from large memory stall times, the 1-PIM version 
(TM-P) has even smaller stall times due to the high data bandwidth at the PIM node. The use of 
the WideWord unit for loading/storing and operating on 256-bit objects, plus the reuse of data in 
WideWord registers reduces the memory stall time to 20% of that of TM-H.  
 
Cornerturn has a memory stall time of 90.17% when running on the host. This application has 
very little temporal reuse, since each matrix element is accessed only twice (one read and one 
write) during the matrix transpose. Thus primarily spatial reuse is exploited in cache, and each 
new cache line is only reused a few times (1 load and 1 store per element, and 8 elements per 
cache line) once loaded, and then never used again. In the PIM version, the WideWord datapaths 
also exploit the available spatial reuse. Furthermore, the WideWord loads/stores and operations 
on 8 matrix elements at a time also reduce the number of accesses to memory. 
 
Finally, the latency seen by the PIM processor (average of 11.57 cycles, since most of the 
accesses are in random mode) is much lower than that suffered by the host.  The combination of 
these factors reduces the CT-P memory stall time to 4.32% of that of CT-H. 
 
CG also benefits from the lower memory latencies on the PIM node. Since the data set size does 
not fit in the host caches and the irregular access patterns cause conflict misses, CG-H spends 
85.21% of its execution time stalled due to cache misses. Although most of the misses are 
satisfied at the L2 cache (51.32%), 46% of the stall time is due to accesses to the DRAM. On the 
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PIM, 78% of the memory accesses are page-mode accesses, and the average latency seen by the 
processor is only 5.91 cycles. 
 
TC-P benefits from both fine-grain parallelism and the higher bandwidths available on chip. TC-
H spends 70% of its execution time stalled due to cache misses, with 47.14% of the misses 
satisfied at the L1 and 52.81% satisfied at the L2, resulting in an average miss latency of 6.23 
cycles. On the PIM version, the average memory latency is of 5.57 cycles, due to 67% of page-
mode accesses. In addition to lower memory latencies, TC-P also has a smaller number of 
memory accesses since the WideWord unit is used to transfer the data to/from memory and 
perform the computation. Therefore the memory stall time of TC-P is smaller than that of the 
host version. The use of the WideWord unit also results in the added benefit of exploiting spatial 
reuse; since the matrix is accessed with stride one in the row dimension. 
 
Neighborhood shows an increase in memory stall time because the data fits in cache, and thus 
the memory latency at the PIM is larger than that of the host. This increase in memory stall time 
and the fact that the PIM processor runs at half the speed of the host results in a slowdown with 
respect to host-only execution. 
 
Pointer has no spatial reuse and little temporal reuse, and since the data set size is larger than the 
L2 cache, P-H stalls for memory for 49.8% of its execution time, with most misses satisfied at 
the DRAM. P-P has roughly the same number of loads and stores, but the average latency seen 
by the PIM is much smaller than the memory latency suffered by the host, even though most of 
the PIM accesses are random-mode accesses. 
 
Natural Join has little temporal reuse and high cache miss rates, even though the data set size fits 
in the L2 cache. NJ-P shows a reduction of 13.8% in memory stall times due to the lower 
average latency seen by the PIM processor. OO7 also has almost no temporal reuse and OO7-H 
suffers from a large amount of cache misses. On the PIM version the memory stall time is 
reduced by 62.8%, again as a result of the smaller on-chip latency. 
 
Benefits from WideWord Unit and Page Mode Memory Accesses. 
To isolate the benefits of the WideWord unit, we compare scalar versions against versions tuned 
to take advantage of the WideWord unit and page-mode memory accesses for the four programs 
that utilize the wide datapaths. These results are shown in Figure 17. Speedups are significant, 
ranging from1.19X for CG up to 17.96X for TM, with an average improvement of 9.93X. 
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Figure 17. Benefits of WideWord instructions and page-mode memory accesses 

 
CG's key computation is a sparse matrix-vector multiply. Due to the mixed regular/irregular 
nature of data accesses, we only exploit fine-grain parallelism in the WideWord unit for the 
regular portions of the computation. The dense vector accesses are loaded into WideWord 
registers, and the dense vector multiplies are performed in the WideWord floating-point unit. 
The accumulates into the sparse matrix are performed sequentially. Selective execution is used to 
select the field of the WideWord operand that participates in the operation. Further performance 
improvements are obtained by reordering memory accesses, grouping streaming accesses to the 
dense arrays to achieve page mode memory access latencies. 
 
The CT implementation performs a hierarchical in-place matrix transpose where the smallest 
submatrices, of size 8x8, are transposed in WideWord registers. Each 8x8 submatrix is loaded 
into the WideWord register file (an 8x8 matrix with 32-bit elements requiring 8 WideWord 
registers), and transposed via a sequence of permutation operations. The transposed submatrix is 
then stored back in memory.  This implementation takes advantage of the large capacity of the 
WideWord register file, avoiding loads and stores to memory during the transpose of each 8x8 
submatrix. 
 
TM computes three correlation values between an image and each of 32 templates, each 
correlation corresponding to a loop nest. The DIVA implementation, which is described in detail 
in [chame00], takes advantage of the inherent fine-grain parallelism by operating on 32 8-bit 
image pixels and 32 8-bit template elements at a time. Since a template is represented as a 32-by-
32 matrix of 8-bit elements, an entire template row fits into one WideWord register. Also, since 
the innermost loop of each loop nest traverses one template row, the entire inner loop 
computation is transformed into a sequence of WideWord operations on one template row and 32 
pixels of an image row, therefore eliminating the innermost loop. The accumulation of the pixel 
values is achieved by a parallel reduction sum, and the result of the reduction sum is added to the 
correlation value using selective execution. To exploit temporal reuse in WideWord registers, we 
applied common loop transformations, particularly unroll-and-jam. In addition, we exploited 
spatial reuse by shifting an image subrow held in a WideWord register by one pixel, to move the 
window of the image to be compared against the template. As in CG, we also reordered memory 
accesses to achieve page mode latencies. 
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TC uses a dense matrix to represent the distance graph. It exploits fine-grain parallelism by 
performing WideWord arithmetic operations on eight 32-bit elements of the matrix that are held 
in WideWord registers. Selective execution using a WideWord operation (wmrgcc) merges the 
contents of two WideWord registers according to condition-code bits, allowing an efficient 
computation of the minimum value of each pair of elements of two WideWord operands. Similar 
to TM, we use unroll-and-jam to obtain temporal reuse in the WideWord register file. 
 
Overall Speedups 
In Figure 18, we present speedups for four benchmarks, using the DIVA system over executing 
the applications on the host processor. Our experiments show significant improvements over the 
host-only execution for the three DIS stressmarks (Transitive Closure, Cornerturn and 
Neighborhood) and NAS CG, with speedups ranging from 19.4X to 39.5X on a 64-node system. 
These high speedups are in spite of the fact that the PIM processors are running at half the speed 
of the host, and are in-order, single-issue, vs. out-of-order, 4-issue for the host. 
 
Our CG implementation performs a parallel reduction to accumulate partial results computed 
locally by each PIM processor. During this parallel reduction phase, a PIM node sends its local 
copy of the result array to another PIM node. This transfer of a large amount of data to a same 
destination processor is well suited for the streaming mode supported by our parcel mechanism. 
In Transitive, there is a communication phase on each iteration of the outermost loop of a 3-deep 
loop nest. During this phase, one PIM processor sends its local copy of a matrix row to all other 
processors executing the parallel application. This communication pattern can take advantage of 
the multicast mechanism supported in DIVA. Similarly, Neighborhood exhibits communication 
patterns that can take advantage of the streaming parcel mode. 
 

 
Figure 18. Speedup on four benchmarks as a function of the number of PIMs 

 
7.3 Earlier Application Studies 
At the initial phase of the project, we derived a set of benchmarks that could be used for 
evaluation purposes throughout the project. This initial set consisted of six benchmarks selected 
from well-known scientific benchmark suites (NAS, Splash-2), pointer-based and database 
benchmarks (Sparse from McGill and OO7 from University of Wisconsin), as well as the 
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template-matching component of Sandia's ATR application, and the Munkres benchmark 
provided by Alphatech. 
 
To evaluate the design of the DIVA ISA, we performed experiments using this set of 
benchmarks. One of the goals of the experiments was to identify useful permutation patterns for 
rearranging data in the PIM wide registers, using the wide unit permutation network. The DIVA 
PIM ISA supports efficient permutation operations for a set of frequently used permutation 
patterns; this application study identified frequently used permutation patterns, such as data 
shifting, reductions, sorting, gather and scatter, which were integrated into the DIVA PIM ISA. 
 
In another experiment, we performed simulations on the template-matching component of 
Sandia’s ATR to evaluate the benefits and trade-offs of the WideWord datapaths. Using 
WideWord operations for exploiting fine-grain parallelism and data reuse in the WideWord 
registers, we obtained a 13x reduction in the number of dynamic instructions and a 300x 
reduction in the number of dynamic memory accesses. These improvements led to an overall 
speedup of 38.3 on a system with 32 PIMs. 
 
We demonstrated a speedup of 20.6x on the NAS CG benchmark, over execution on a high-end 
workstation based on the MIPS R1000. Several architecture features of DIVA contributed to 
these speedups: the lower memory latencies on PIM chips, the PIMs wide datapaths for parallel 
memory operations and efficient communication, and a WideWord floating-point unit that allows 
four double floating-point operations to be performed in parallel. For these experiments, we 
modeled in the simulator a WideWord floating-point unit capable of performing four double 
precision floating-point operations (our second DIVA chip supports eight single precision 
floating-point operations performed in parallel). 
 
We performed an initial mapping of three of the DIS benchmarks (Image Understanding, Ray 
Tracing and Method of Moments) to the DIVA architecture, including data and computation 
partitioning between host and PIM processors, parallelization (coarse- or fine-grain), and data 
locality optimizations. We did not complete our studies of the DIS benchmarks, since soon after 
performing the mappings, the DIS stressmarks were introduced and became the benchmark suite 
used by all the DIS projects. We subsequently concentrated our resources on experimenting with 
the DIS stressmarks. As a result, we did not produce performance results for the benchmarks. 
Nevertheless, for archival purposes, we include the most interesting aspects of the mappings here. 
We spent the most time on Image Understanding, which has three core computations: a 
Morphological Filter that compares a kernel to an image, Region Selection based on results of 
filtering, and Feature Extraction that identifies features within the regions. The first of these was 
handcoded to use DIVA's WideWord unit. The second, which accounted for only a small amount 
of the sequential computation, was performed on the host processor. The third part is executed in 
the DIVA PIMs. For Ray Tracing, we obtained good parallel speedups by replicating a small 
object database on each PIM and performing the screen pixel computation in a cyclic fashion. If 
instead the object database is large and replication is not feasible, the costs of frequent irregular 
communication would dominate performance. 
 
8. Emulator 
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8.1 Hardware 
As part of the DIVA architecture development, an FPGA-based emulator was constructed to 
provide an early platform for software development and demonstrations. This effort produced 
two versions of hardware in response to track developments and requirements emerging from the 
primary architecture effort. 
 
The DIVA emulator is a single-board peripheral device designed to plug into a commercial 
Linux PC system. It is based on commercial Xilinx Field- Programmable Gate Arrays (FPGAs) 
and may be configured to support a wide variety of applications beyond the emulation of DIVA 
processors. The emulator is designed to support rapid configuration as a DIVA PIM processor 
for executing DIVA programs, however, it is also a general-purpose FPGA engine capable of 
supporting a wide range of hardware modeling applications. Table 2 summarizes the hardware 
features of the emulator. 

Table 2. Emulator Hardware Features 

 
 
As is shown in Figure 19 of the first version of the DIVA emulator, the emulator circuit is 
constructed on two printed circuit boards stacked to form a thin sandwich. The emulator meets 
PCI physical size restrictions, even with components mounted on both sides of the two boards. 
 

 
Figure 19. Photograph of emulator board 
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In addition to the FPGAs, DRAM and SRAM memories, and PCI bus interface ASIC 
(Application Specific Integrated Circuit), the main emulator board also contains a small Atmel 
microcontroller used for power control and FPGA thermal monitoring, and voltage regulation 
circuits to supply the FPGAs with power. The Atmel microcontroller can communicate with the 
host system via a “mailbox” in the PCI interface ASIC, enabling the host to issue commands for 
power control and clock rate generation. Figure 20 depicts how the emulator board components 
are interconnected, and can be used as a guide for partitioning new logic designs so they can best 
fit the available resources. 
 
The on-board power regulation circuit delivers 1.8 VDC and 2.5 VDC to the FPGAs and other 
on-board devices. The 1.8 V level is used for powering the FPGA internal circuits, while the 2.5 
V rail is used to supply power to the input/output pins of the FPGAs, memories, and PCI 
interface ASIC. 
 
8.2 Software 
 
8.2.1 Linux Driver 
The Linux driver for the emulator is written to be compatible with RedHat Linux v7. The driver 
provides interrupt-handling code (not used in DIVA emulations) plus basic services – device 
open, read, write, etc. – Required by applications programs such as the user command program. 
 
8.2.2 User Command Program 
The emulator user control program is a simple application that provides the user with a simple 
set of commands to control the emulator board. Table 3 is a short description of the commands 
available to users. 
 

Table 3. User control commands 
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Figure 20. Schematic and photograph of emulator board interconnect details 

 
8.2.3 Graphical User Interface 
Figure 21 shows the user command program display panel. The underlying text-only command 
interface has been overlaid by a simple graphical interface that allows the user to control the 
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operation of the emulator, including single- or multiple-clock execution stepping, and a display 
panel to report the contents of registers and memory locations within the emulated processor. 
 

 
 

Figure 21. Emulator GUI 
 
8.3 Edge Detect Demonstration 
The emulator was used to demonstrate execution of a simple DIVA program for edgedetection 
(Sobel filtering) in a small (256x256 pixel) image. While simple in construction, this program 
requires the execution of over two million DIVA instructions to complete. The photographs in 
Figure 22 are typical of images used in the demonstration, and the corresponding results of edge 
detection. Changing the threshold value used to determine the presence of an edge, or light/dark 
transition can reduce the amount of “clutter” visible in the result. 
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In this demonstration, the host system loaded the DIVA PIM program into memory– SRAM – on 
the emulator card. The input image was loaded into PIM storage –DRAM – by the host system. 
The emulator was directed to run the program, which used the original in PIM storage to 
generate results that were placed in another region of DRAM. When execution completed, the 
host could read the results directly from PIM storage and display it in a window for viewing. The 
edge detect program required approximately one second to execute. 
 
8.4 Lessons Learned 
Several valuable lessons were learned during the development of the emulator. 
 
8.4.1 Nominal Clock Rate Isn’t 
According to Xilinx, the DIVA emulator was the first design to use the XCV1000 devices. It 
soon became apparent that the FPGAs would not support the initial target of 40-megahertz clock 
speed – the FPGA wiring resources would not consistently propagate signals. In fact, Xilinx 
provided special wiring paths to propagate critical signals over long distances within the FPGA.  
Unfortunately, these wiring paths constituted less than ten percent of the available wiring 
resources, requiring that every new FPGA design be hand placed and routed for efficiency. As a 
result, the nominal clock rate of the emulator was reduced to ten megahertz. 
 
8.4.2 Partitioning Across FPGAs Is A Hard Problem 
As the architecture evolved, it became apparent that a PIM processor with a full WideWord 
datapath would not fit in a single XCV1000. This forced a large amount of effort to be expended 
in partitioning the node across two FPGAs: one for the scalar (32-bit) datapath and the 
instruction pipeline, one for the WideWord datapath. 
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Figure 23 shows how the PIM processor was partitioned across the emulator FPGAs and other 
board-level resources. First, while the emulator effort as started at the beginning of the DIVA 
effort, the evolving nature of the architecture made it very difficult to anticipate the eventual 
logic requirements of the ASIC. The first version of the emulator was built with Virtex 
XCV1000 devices, which claimed to deliver a capacity of one million logic gate equivalents. As 
DIVA was originally conceived, this would have been more than adequate to configure a full 
DIVA PIM processor – indeed; this was the reason four copies of the FPGA/DRAM/SRAM 
cluster were implemented on a single board 
 
8.4.3 FPGA Tools Are Not Robust (WideWord Impact) 
After the scalar 32-bit processor was demonstrated with the edge-detect program, the WideWord 
(256-bit) datapath design was begun. This design was simplified by the fact that the scalar 
datapath could be replicated and modified to implement the variable word width features of the 
WideWord instructions. This modified datapath was then copied eight times to produce the 
WideWord logic. At this point in the design the design tools distributed by the FPGA 
manufacturer, Xilinx, broke, and did so in unpredictable ways.  Compilation runs would freeze, 
abort at random points in the process, or would refuse to begin. Incomplete runs would not 
produce any output data, so it was essentially impossible to determine what aspect of the design 
was causing the failure. 
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Although Xilinx responded to some of these errors with additional releases of software, we did 
not receive the level of support required to work through these problems. It was decided that the 
design of the WideWord unit would have to be further partitioned to get any design to complete. 
 
8.4.4 Cycle Accuracy Requires More Clock Cycles 
The basic operating requirement for the emulator was to provide cycle-accurate results.  That is, 
at the end of every clock cycle, every register should contain correct results. This requirement 
enabled the emulator design to be further partitioned so that the WideWord could be represented 
by four 64-bit datapaths, each executing the current instruction in one quarter of the pipeline 
clock. This partitioning drove the final execution speed of the emulator to 2.5 MHz, which is still 
very acceptable when compared to software simulations. Figure 24 depicts the basic pipeline 
clock partitioned into eight microcycles. 
 

 
Figure 24. Partitioning of clock cycles into microcycles 

 
The colored bands illustrate how one pipeline clock can be divided into sixteen microcycles 
should the need arise. The emulated DIVA PIM hardware executes WideWord instructions using 
eight micro-cycles – four are used for each of the 64-bit operations, the remaining four are used 
to guarantee safe data storage in the WideWord register file and to avoid bus conflicts when 
making a selection among one of the four 64-bit data fields. 
 
9. Prototype System Integration 
The goal of the prototype system was to produce a stable, high bandwidth demonstration 
platform for DIVA PIMs. In addition it was to provide an environment in which to debug and 
performance monitor the first PIM chips. 
 
The demonstration platform required several areas of effort including: 

- Host Node Board 
- Host Peripheral IO 
- Host Operating System Code 
- PIM-ulator 
- Assembler & Linker 
- PIM-Specific Code 
- PIM SO-DIMM 
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9.1 Host Node Board 
A custom PPC 603e based node board was used from funding under the ASNT project.  It 
contains an MPC106 combination memory controller and host bridge for PCI. Designed at ISI 
this allows straightforward modifications to both hardware and firmware for PIM operation. 
 
9.2 Host Peripheral I/O 
The host node PCI port provides a method for off-the-shelf subsystems to be used for standard 
I/O functions. An expansion CPCI (Compact Peripheral Component Interconnect) chassis and 
ethernet, video, scsi, and serial io cards were purchased and checked out with the PPC 603e-
based PCs on hand from the ASNT project. 
 
9.3 Host Operating System Code 
Though the host node has only skeleton firmware, it was thought that Linux would be able to 
boot when provided with a device tree. That was necessary but not sufficient.  Each peripheral 
may contain its own custom firmware that must be executed in a delicate interplay with the host 
node firmware (either Open Firmware or BIOS compliant) in order to be LINUX (or any other 
OS for that matter) bootable. Progress has been made toward hand-executing this interplay, but 
in the end the pace was insufficient for the project needs. Per the PIM Specific Code section 
below, a small OS called RTEMS was to be used for the PIM and was also pressed into service 
for the host node. A port of RTEMS was made to the host node and its skeleton boot firmware 
that allowed TTY console communication in a matter of weeks. The port accomplished three 
things: provided experience with RTEMS in an easily debugged environment (the host node), 
made the host node capable of controlling and performance monitoring the PIM, and finally 
provided a reasonable operating system for the development of PIM memory management code. 
It was used to great effect in the DARPA Tech 2002 demonstration of the host node and PIM 
noted in the summary below. 
 
9.4 PIM-ulator 
Concern over both the schedule and functionality of the first PIM chip coupled with the 
existence of unique hardware led to the creation of the PIM-ulator. The ASNT Bridge node 
hardware contained six powerful FPGA devices that allowed one host node to communicate to 
another via external L2 cache cycles. In that way one host node could simulate the PIM 
processor and memory while the other acted as a normal host node.  This configuration allowed a 
path for OS and memory management software and operational interaction between host and a 
pseudo-PIM without the real PIM chip. 
 
9.5 Assembler and Linker 
Open source tools from the gnu project have been on plan from the project outset. The first 
Assembler for DIVA was a port pulled from the MIPs branch of the gnu assembler tree due to 
similarities in the Instruction Set Architecture. It was used for the Emulator area of the project 
described elsewhere in this document. The port required some 660 unique versions of 94 DIVA 
instructions. The assembler and linker saw standalone use in the Emulator and then more 
extensive and integrated use as the chip was brought-up and tested. 
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High-level compiler support was desired for the wide-word chip functionality. The front-end of 
the compiler (gcc) was pulled from the PPC branch of the gnu tree due to the availability of PPC 
Altivec extensions. From this branch, the backend of the compiler was modified to produce 
DIVA assembly mnemonics as input to the assembler. The two worlds of MIPs and PPC collided 
as the gcc tool chain was used as a whole. The PPC-based backend was sufficiently incompatible 
with the MIPs based assembler to require a port of the MIPs rewrite to the PPC assembler base. 
The compiler was then able to work from the DIVA-modified Altivec extension front end, 
through the DIVA-modified backend and finally out the DIVAmodified PPC assembler and 
linker. This combination has seen much use in conjunction with the PIM hardware and the host 
node system. 
 
9.6 PIM Specific Code 
The PIM is to have multiple threads operational on the chip under control of the Run- Time 
Kernel (RTK). Initially it was to be a custom in-house design, but as the intricacies of coherent 
management of memory from the host node side and PIM node side became apparent it was 
decided to concentrate on those intricacies and use something off-the-shelf for the bulk of the 
less novel details. RTEMS, real-time operating system initially designed for mission critical 
guidance and control systems was chosen for its capabilities, small footprint and open-source 
status. It was ported and built for the PPC-based host node as mentioned above under Host 
Operating System Code. 
 
The memory management code was the target of much effort leading to a paper published in the 
Proceedings of the Workshop on Intelligent Memory Systems, held in conjunction with 
Architectural Support for Programming Languages and Operating Systems in November 2000. 
The code development of this PIM-specific code was implemented and simulated in a LINUX 
environment and is to be ported to RTEMS with only a moderated amount of expected effort. 
 
9.7 PIM SO-DIMM 
After the PIM chip passed initial functional test in a test board connected to a logic analyzer, the 
design of a system memory board was finished and fabricated. It consisted of two PIM chips on 
an SDRAM SO-DIMM form factor memory board. The two chips may be interconnected to each 
other or to other PIMs on other memory boards. Logically this interconnection is accomplished 
with the Parcel buffer; physically it is with ribbon cables. These memory cards were tested out in 
the host node first as common SDRAM memory, addressed with two different chip-selects from 
the memory controller. With reliable operation of the memory subsystem the focus turned to 
running the Cornerturn stressmark kernel on the chip. 
 
9.8 DARPATech Demonstration 
In the spring of 2002 ISI was invited to present a demonstration of DIVA PIM technology at the 
DARPATech Symposium at the end of July. It provided an additional goal and focus during 
those months. Ten packaged PIM chips were assembled onto five SO-DIMM memory module 
boards, one shown in Figure 25. 
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Figure 25. SO-DIMM memory module board. 

 
Within a week the memory interface to both chips was proven operational. The next business day 
the Cornerturn stressmark code that was verified on the PIM test board was running at speed in 
the PIM on the SO-DIMM inserted into the host node demonstration system, shown in Figure 26. 
 

 
 

Figure 26. Host node demonstration system 
 
Many different aspects of the host node and PIM required attention and could have jeopardized 
the demonstration. Memory tests that logged number of and location of last error were written 
for the PIM memory to ensure enough good memory space for the code and data. The host node 
memory controller required parameters for the new memory since there is no host node Open 
Firmware (BIOS). The host node SO-DIMM sockets were replaced with 22.5 degree sockets to 
accommodate the oversized wing of the PCB that holds the PIM chips. Small clock and reset 
modules were made to provide these functions to the host node when standing alone in a CPCI 
cage. A chip reset line which enables operation from a reset vector was also wired to a pin set 
aside for such on the memory socket, while the host node CPLD (Complex Programmable Logic 
Device) was enhanced with register support of an I/O line wired to that pin for reset control. 
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The software provided another set of constraints. Our goal became to put the PowerPC host node 
into a race with the PIM. RTEMS was used to manage this race on the host and at the same time 
use task priorities to ensure full processing time was given to the host. The PIM Cornerturn 
application was hand written and hand assembled, while the host Cornerturn was written in C 
and automatically compiled and assembled with gcc and gas for the PowerPC with no 
optimizations. The resultant assembly code was compared for similarity to the PIM code and was 
within a few percent of the same cycle count. 
 
The code and data were loaded through an emulator to both the PowerPC and the PIM memories. 
The data size was 32k bytes, 8k 32-bit integer values. This data size was deliberately larger than 
the PPC603e 16k byte data cache. Then under control of RTEMS via the PCI serial card the 
demonstration was started. The host counted off 1000 iterations of Cornerturn. The PIM was let 
run during that time.  The PIM performed over 35,000 iterations yielding a 35x speedup. The 
clock speed of the 603e was 166 MHz while the PIM was 133 MHz. The numbers illustrate both 
the large penalty for cache miss behavior on the host (~13 bus cycles @ 66MHz for 205ns) and 
the large benefit of very low-latency (~3 cycles @ 133MHz for 23ns) access to main memory for 
the PIM processor. 
 
9.9 Stressmark-on-Chip Verification 
Continuing forward, we realized that many parts of the system required verification at once: the 
chip, the system interface, the assembler, the compiler backend as well as the compiler. With a 
small team and a plan for a second release of the chip with more features, we have adopted a test 
strategy of using the DIS Stressmark suite with known inputs and outputs to give maximum 
functional coverage with minimum effort. To that end, we have taken the C versions of 
Cornerturn and Transitive Closure through the DIVA compiler and assembler. The kernel of the 
stressmark is then extracted, setup code and the known input data is appended and the code is run 
on the chip. The outputs are then checked against known good output from gcc builds and runs 
on a Sparc workstation. 
 
This method has turned up a handful of bugs in several different areas and is proving to be a 
viable approach under the limited time constraints. 
 
Recent verification work has shown successful execution of bi-directional message passing, 
along with transitive closure, pointer, and 2-pim transitive with integral chip-to-chip 
communications. 
 
9.10 Future Work 
The integration effort as a whole is still paying dividends. The HPCS project is using the current 
system to measure DIVA’s performance on the StreamAdd benchmark and project expected 
performance for the HPCS-sponsored Godiva system. The next chip turn incorporates a DDR 
interface, mounted on full size DIMM memory cards plugged into a commodity Itanium-based 
workstation as a test bench for the larger system concepts. 
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12. Results, Conclusions & Technology Transfer 
The single most important result produced by the DIVA Project is a complete working system 
that demonstrates the advantages of PIM technology used as “smart memories”. This is the 
proof of concept that “smart memory” can help ameliorate the “memory wall” that limits the 
performance of present day memory systems. 
 
This achievement paves the way for further research on systems with heterogeneous memory 
systems, that is, PIM and conventional DRAM used together; PIM-based memory hierarchies, 
for example, PIM caches; studying and evaluating larger applications problems; namely, those 
that cannot be run on a simulator or emulator and combining this technology in new ways or 
incorporating it with other technology into new architectures. 
 
Two follow-on research projects have already started to build on the DIVA technology 
MONARCH under the DARPA-sponsored Polymorphous Computer Architecture Program and 
Godiva under the High Productivity Computing System Program. Perhaps of even greater 
significance these new projects are expanding the research and extending the technology in 
partnership with large industrial partners.  MONARCH is a joint project with the Raytheon 
Corporation, a leading defense contractor and Mercury Computing, the largest supplier of 
embedded computers to the military. Godiva is a joint project with Hewlett Packard, a major U.S. 
computer vendor. Both of these projects represent significant IP transfer from DIVA but also 
represent a high possibility for insertion of DIVA technology into real military and commercial 
systems. 
 
A “second turn” of the DIVA VLSI funded under the MONARCH Project will also incorporate 
floating-point unit into the WideWord unit greatly enhancing DIVA’s applicability to a broader 
class of scientific problems. 
 
The DIVA team has briefed many of the research leaders of major U.S. companies like IBM, 
Intel, Hewlett Packard and Sun, as well as several venture capitalists that have expressed an 
interest in DIVA technology. We have also briefed the Deputy Under Secretary of Defense for 
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Science and Technology, NSA’s Director of Computing and the DOE’s ASCI Program Manger. 
We will continue to inform the decision makers about this technology. 
 
The main issue with the acceptance of PIM and Embedded-DRAM technology is the cost-
performance, that is, does the added cost of combining DRAM on the same chip with the logic 
processing warrant the added expense of manufacturing these die. This is a complex question 
and depends on the specific application and also the semiconductor technology. At this time, 
there is definitely a premium to be paid for the added performance offered by systems that use 
PIM technology. 
 
13. Inventions, or patent disclosures 
No inventions were disclosed or patents submitted by the USC DIVA research team. 
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IVIemon Inlerface Rin^ 

Finurt 11: Tho tlui'i-Riiiii rk'\i-DISC Architecture 

The fundamental observation which leads to this partitioning comes from the fact 

that the types of applications (Memor\ Intensive) we have been targeting are both varied 

ill nature and also inherently highly dynamic at execution time. This may mean that 

memory access patterns could range from. say. single use of any data element (no 

temporal locality), to multiple reuses (higli temporal locality). Consequently, the 

bandw idth and types of pipes to and from the memory system must adapt to the changes. 

whether they be static or dynamic. We plan on centering the whole architecture around a 

higlily reconfigurable Computation Kernel. 

The central Computation Kernel is based on an array of snnple processors which 

can be dynamically rearranged to meet the demands of the cuirent application. It can 

e%en be partitioned into sub-arrays which are allocated to different portions of the 

application (or e\ en to different applications as needed). Such a poweitul computation 

kernel requires an equally powerful "pipeline" to feed it information to and from the 

memory system. Further, the variety of target applications makes the memory accesses 

unpredictable. Tliis means that depending on tlie application (or e\en the phase of a 

gi\en computation), the amount of memory traffic may fluctuate, and the prefetching 

mechanisms must be allowed to adapt to the situation at hand.   This also means that 
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inHtcod of allowing ii single processor for ihc Ci\chc Access rofe Liruf iinocber for the 

Cache MiinEtgcmcm role, a pool of identical processing units must be made avEiilable to 

the two roles combined. This sharing eni^blcs a highly efllcient dytuimlc paititionlng of 

the lesources and their riiEi-fiEiie LLIIOCLLUOJI lo the two outei rings (the Low-level Cache 

Access Ring, and ih^' Meniotv liikrtucc Ruig). 

Tlie technology UcN'clopt'U for the HiDISC compiler can be espLiiulcU to include 

the rearraiiLie iibiliiv of llie mLichHK\ as well LLS ihc pLiciitioning il will undci'L;^ JJI llie 

presence of multi-heaUeU applications. 

Mfntui^i' liiiiiTjii:*.' Hin^ 

ricim' 12: Multipk' ^ipplkiiticm shiirin^ of tho rio\i-l)IS(^ mndi'1 
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arc bcinj; lmn'^millod lo Ihc receiver, ihe wnle poinler of ihe 

sending I'lF-O dwremenls if (here are IK'» incoming llils from 

Iho neijfhK'ring PiKC On IIK' olhor hand. Ihe pi^inler keeps 

poinlinj; lolhe ^ame Hil hiilferin ihe ^endin^ F'lF-O if Ihe end- 

ing riE'O is simullanei.Hi'^h reeei^ in^i daui Irom ils neighbor 

The swileh delemiines Ihe direelion in which a paekel is lo be 

fon^arded "Ihe firsl llil of n pnekeL Ihe header, et.'^nlainsroul- 

ing infominlion for Ihe suileh fhe header is iinnn encoded 

such ihalllh.'number of k^ps:i pnckelis lolmxei^' isindicnied 

b\ Ihe numK'rol Ts sel in Ihe header "Ihe header is shiDed 
nl each hop so Ihni Ihis \:ilue is decremenled "I herefore. Ihe 

switch simp!) inspects Ihe fiisl bilof Ihe roulin^ header lo de- 

termine nhich output pi^rt lo request forn^ixenp^nckel Using 

a lirst-come-firsl-sened polic>. the output contn.^ller,nrhilmles 

fairb between requests fn^-^m Ino E-ll"Oi c^^nlendin^ for usage 

of Ihe same output phvsicnl channel If contending; requests 

nrri^e in the same clock c\cle lo nn idle output controller, an 

aibilmn selection is performed: k'^ne^er. Ihe E"irC> which is 

not i^mnted access during this arbitration is guaranteed access 

when Ihe current l-'IE"C>compleles based on Ihe lirsl-come-fiist- 

sened policy. 

Fig. 7. La^Dui 

whether the corresponding packet tr^i^els from the (Pel riE'O 

lolhe( -) l-'IE"Oor Ihef-I l"ll-'0 "lest xeclor^ are injected on the 

Tester terminals indicated in E"igure X. nhichessentialK ser\e 

as processing element signals The scenarios are as following: 

III   IMPLEMENTATION AND PERFORMANCE 

The PiR< design nas K'gun b> behavioral modeling in 

VHI3I. and o.'^mpiled with S>nops>s Cascade EilXK'M nas 
used for routing and placement as n el I as la>oul generation for 

a prototype implementation Control blocks nere ssnthesized. 

while the short-cut E-I1"0 nas generated using custom lavout 

to achieve high density We tested our design at Ihebehav ioral 

level, pre-svnihesis level, and p^'si-svnlhesis level with Svnop- 

sys. and imnsisior level nith Powennill 

The resulting PiRC prototjpelavout isfor the IIP 14b process 

available through MOSIS. This process uses C^Oj/im. .*-la>er 
metal CMOS technology The PiRC has a die si>:e of 2 70 mm 

\ 2.}6 mm and conLnins 75.276 transistors Simple hardv^-are 

based on an efhcient routing algorithm allows us to achieve a 

clock frequenc> of SOMII/ "Ihe router t.'fxrrateson K'^thclock 

edges, leading to a channel bandwidth of 5.l2(ibs. Onlv one 

clock is n;^]uired for a Ilit to move from one node to the ne\t. 

resulting in a node-lo-node delav of 12.5ns E'igure 7 shov^-s 

Ihe lavoul of ihe PiRC. placed and routed with Ihe lloor plan of 

E"igure I Ahhough this prototype achieves respectable perfor- 

mance, we expect performance lo improve signilicanlh when 

we migrate toacurrentl} available embedded [!JR.\M process 

using 0.25/im or even OJS/im technology, such as the IBM 

SA27-E or TSMC preKKSs. 

IV  SIMULATION 

Fi^e critical scenarios were used to verifv Ihe PiRC design. 

Ihe e\temal PiRC connections used for simulalion are shown 

in E'igure S Ihis a^nliguration allows sk^l-cut E"ll"Os to 

be cascaded together n^ that one E'lrO essenliallv feeds an- 

other The header flit of a packet is set in simulation to specify 

FJ^ 8^ Rouler CmAgunidai li>rTesdi^ 

1. Iv^-o messagesmosetiack'to-back without blocking 

2. Tv^-o messages move back-to-Kick "I he first message is 

blocked until the (-.-) FIFO is full ConsequentK. the 

sec^'^nd message is blocked in the f[\rl ETE"0 and starts 

fliling it Ihen. the lirst message becomes unblocked and 

drains oul .\ssoonas the first message starts moving out. 

the sea^nd message follows it along the path 

3. Tv^-o messages move back-t^vback. "fhe first message is 

blocked until the f .-) ETE'O gels half-U.TIV full, and then 

the first message drains out. 

4. The first mess:^e is blocked until the(-.-) FIFO fills half- 
v^-a>. and when Ihe first message starts draining out of 

the I-.-I l"IFO. the second message is injected to thefPe) 

FIFO fr^-tm the tester Oue to the -ihort-cul III*) design, 

the second message quickl) traverses the tPeJ FIFO to 

trail ihe first message. 



 351

 



 352

 



 353

 



 354

 



 355

 



 356

 



 357

 



 358

 



 359

 



 360

 



 361

 



 362

 



 363

 



 364

 



 365

 



 366

 



 367

 



 368

 



 369

 



 370

 



 371

 



 372

 



 373

 



 374

 



 375

 



 376

 



 377

 



 378

 



 379

 



 380

 



 381

 



 382

 



 383

 



 384

 



 385

 



 386

 



 387

 



 388

 



 389

 



 390

 



 391

 



 392

 



 393

 



 394

 



 395

 



 396

 



 397

 



 398

 
 
 
 
 
 
 
 
 
 




